
Tube-wave Effects in Cross-Well Seismic Data 
 
Valeri Korneev, Lawrence Berkeley National Laboratory, Berkeley, California. 
 

ABSTRACT 

   The analysis of crosswell seismic data for a gas reservoir in Texas revealed two newly detected 

seismic wave effects, recorded 2000 feet above the reservoir.  The first is that the dominant late 

phases on the records are the  tube-waves generated in the source well and later converted into 

laterally propagating waves through the reservoir in gas/water saturated layers, which convert 

back to tube-waves in the receiver well. The tube-wave train showed good correlation with 

multilayered reservoir zone structure, suggesting that the recorded wave field has strong 

dependence on the reservoir parameters.  The second effect is that the recorded field is composed 

of multiple low-velocity tube-waves.  The modeling results suggest that imperfect cementation is 

the likely cause of this phenomenon. 

 

INTRODUCTION 

    Tube-waves are traditionally regarded as a source of high amplitude noise in borehole seismic 

data and much effort typically goes into their suppression and elimination from recordings (Daley 

et. al.,2003). Tube-waves have very large amplitudes and can propagate long distances without 

substantial decay.  A tube-wave is an interface wave for a cylindrical interface between two 

media, typically a borehole fluid and surrounding  elastic rock. Borehole waves were described 

by Lamb (1898) and were observed in the early twentieth century (Sharpe, 1942; Ording, 1953), 

as summarized by White (1965). Using trapped (or guided) mode analysis, the classic tube-wave 

can be seen as the lowest order trapped mode (Schoenberg, 1981). Higher order modes may be 

generated depending on material properties and source frequency. The fundamental mode is 

usually called a Stoneley wave (ref) . Some work has been done to analyze tube-wave attributes 

in order to evaluate rock properties (for example, Cheng et al., 1987, Kosteket al., 1998}.  The 



conversion of tube-waves into a coal seam trapped modes was reported by Albright and Johnson 

(1990). 

 

STRATTON FIELD EXPERIMENT 

 

   The Stratton field experiment was designed in order to experimentally demonstrate the 

transmission and detection of guided waves in low-velocity sedimentary layers. The details of 

data acquisition, processing and low-velocity bed continuity study results can be found in Parra 

et. al. (year), Gorogy et.al (year) . The objective of this project was to establish the feasibility and 

benefit of using interwell guided seismic waves in characterization of Gulf Coast gas reservoirs. 

Target zones were selected based on geological markers, seismic reflectors and well logs from the 

upper Frio Formation at the Stratton gas field.  It was selected because it is one of the most 

extensively studied and well-documented producing oil and gas fields on the Gulf Coast (Levey 

et al., 1994). The Stratton field consists mainly of sandstones and shales of the Frio Formation 

with velocity contrasts on the order of 10% to 20%.  Three low-velocity intervals were identified, 

from top to bottom, as the V2, V5, and V12 shale zones, and were recognizable in all the wells. 

The three wells in Figure 1 are the wells used to conduct the interwell logging experiments and  

are located in almost the same vertical plane.  The data were collected in the receiver wells 

Ward159 and Ward145, while sources were placed in the well Ward145 between the receiver 

wells at three positions, corresponding to the centers of target layers V2 at 3816 ft (A), V5 at 

4133 ft (B) and V12 at 4570 ft (C).  The source was Texaco’s multiple air gun, a tool comprised 

of three air guns spaced 27 inches apart, which fire simultaneously with each shot. 

   The guided-wave signatures were related to targets arriving in the 0.6 – 0.8 s time interval.  The 

observed seismic data indicate the presence of trapped energy in low velocity shale markers 

between wells 145 and 151. Guided waves in the form of leaky modes are excited, transmitted, 

and detected in the low-velocity shale markers at a well separation of 1730 ft (527 m). Dispersion 



analysis, modeling, frequency–amplitude depth curves, well logs, and lithological information all 

support the results. Due to an unusually large interwell distance in the crosswell system the 

overall data quality was poor. Just two shots were used for stacking the data because the release 

of air bubbles into the borehole fluid rapidly reduced the coupling between airgun source and the 

formation, producing about 40% of elastic wave energy compare to a previous shot.  The 

strongest phases in the records, which were arriving later then 0.8 s were not interpreted at the 

time as being out of scope of the experiment goals. 

 

Data sets 

   The three data sets A145, B145 and C145 consist of 46 records each from the receivers 

positioned across the target layers.  The upper 7 receivers had a 10 ft spacing interval, while the 

next 33 receivers had 2 ft spacing and the lower 6 receivers again had 10 ft spacing interval.  The 

whole length of the receiver line for the well Ward145 was 170 ft and had the best data quality 

compared to the data sets A159, B159 and C159 obtained in the well Ward159, where 3-

component geophones were used.  The recorded signal frequency was up to 300Hz in the well 

Ward145 and up to 100Hz in the far well Ward159. The Ward159 data sets had 22 receiver 

positions with 5 ft spacing covering 115 ft of depth around each target layer.  

   While geophones were used in the cemented well Ward159, the attempt to cement the space 

around the casing in the well Ward145 failed and there was no good bonding between the casing 

and the formations above 5100 ft in that well. The hydrophone recording in that well had a better 

signal-to-noise ratio compared to the other well, which is most likely the result of the smaller 

source-receiver distance.  On Figure 2 the low frequency (50-100Hz) filtered traces are shown  

for data sets A145, B145 and C145.  The same data sets for the high frequency (100-160Hz) band 

are shown  on Figure 3.  There is a  presence of late high amplitude arrivals in the data, which is 

most pronounced at low frequencies.  These arrivals are concentrated in separate wavetrains, 



which are denoted as W  , where the integer index k  corresponds to the order of 

arrival. 

k 1,2,...6=

 

Data processing 

   The interpretation of the strong late phases arriving in the 0.8–2.0 s interval is the subject of this 

paper.  The relatively small travel time (0.2s) for the direct P-wave arrivals suggests that the late 

phases belong to waves with long propagation paths and/or rather small velocities. This energy 

was clearly elsewhere while the direct P- waves were arriving at 0.2 s.  The apparent velocities of 

the strongest phases around the 1 s arrival time were estimated to be in the 1300-1500 m/s range, 

which corresponds to propagating tube-waves. Figure 4 shows stacked amplitude spectra of traces 

computed with a moving 0.3 s time window for three (A145, B145, and C145) sets. The spectra 

show the existence of two dominant frequency ranges in the late arriving phases with central 

values of 60 and 110 Hz.  The main feature of the panels are the high amplitude wave trains in the 

40-100 Hz interval.  The late wave trains with highly similar waveforms are clearly seen from 

this data.  The traces were cross–correlated with the corresponding first arriving wavetrain 

interval, which allowed the measurement of the main peak traveltimes with better than 0.01 s 

accuracy.  This interval was 0.7 – 1.3 s for A145, 0.7 – 1.3 s for A145,  and 0.7 – 1.3 s for A145 

datasets.  The high (90-100-200-220 Hz) and low (30-40-80-90 Hz) band-pass filtered data reveal 

practically the same results (Figure 5), which suggests negligibly low dispersion in the frequency 

band under consideration.  The measured travel times for the strongest central peaks are given in 

Table 1 and represent upward propagating waves of varying velocities. 

 
Receiving wells  -> Ward 159                                           Ward 151 

Recorded waves Wave 1 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 

Layer V2 at 3816 ft 1.17 1.055 1.605 - - - - 

Layer V5 at 4133 ft 1.04 0.92 1.32 1.75 - - - 

Layer V12 at 4570 ft 0.86 0.73 0.965 1.19 1.115 1.64 1.875 



 
Table 1.  Picked travel times [s] for the maximum energy phases. 
 
 The high degree of correlation between different wave trains W  allows us to assume a constant 

frequency-independent propagation velocity along the well.  Evaluation of these velocities is 

done in several steps. First, the travel times obtained from well Ward159 are used to determine 

the tube-wave velocity  in the cemented wells, yielding  m/s.  Then, the velocities 

of the first three k wave-trains recorded in at least two of the target layers are 

determined from the equation 
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where are the recorded travel times for a wave )(k
lt k  at a target layer l , and is the depth of 

that layer.  This allows us to evaluate the velocities for the three fastest waves and obtain the 

values  m/s,  m/s, and  m/s.  In order to determine the depth of 

origin of slow wave generation, it is assumed that waves recorded in Ward145 originated at the 

same depth , and for any target layer i  we can use the equation 
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where indexes  and  indicate one of three recorded waves.  All five possible combinations of 

waves (since the layer A has just two recorded waves) give very close values averaging at 

 and varying within a 12 ft range.  This value almost coincides with the 
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depth of the well packer.  In all of the following evaluations, the packer location is the origin of 

all tube-wave trains recorded in Ward145.  According to well records at depths below the packer 

Ward145 has cementation, and therefore it is assumed that the tube-wave velocity at those depths 

is the same as for Ward154 and Ward159 and is equal to  m/s.  Using this assumption, 1460vc =



the velocities of the other three wave trains ( 4  can be estimated using the same 

equation (2).  The results for all tube-wave velocity evaluations are shown in Table 2.  
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Table 2.  Tube-wave velocities [m/s]. 
 
 

Cemented wells       Non cemented part above casing in  Ward 151 

Wave 1 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 

1460 1365 470 288 207 162 132 

 
The almost perfect lateral homogeneity of the formation permits the interpretation of the wave 

propagation of late arrivals as consisting of three-leg paths. The wave propogates downward as a 

regular tube-wave, then converts into a horizontally propagating wave along some seismically 

conductive layer and after reaching the receiver well it propagates upwards, splitting into a set of 

at least six waves of different velocities at packer depth. The depth and velocity of this 

horizontal layer may be estimated by solving two equations of the form 
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where is the travel time of a first arriving tube-wave at both receiver wells ( ), 

and  is the distance between source and receiver wells (  ft.,  ft.).  The 

fine layered structure of the formation makes it anisotropic for wave propagation.  The horizontal 

propagation velocity in layer g can be expressed in the form , where  is the mean 

velocity taken from log data and a is some unknown constant.  Three independent estimates for 

each target layer  gave the values h ft. and .  After obtaining these 

estimates, equation (3) can be used to map the recorded seismic phases from the time to the depth 

scale.  Figure 6 shows a comparison of guided wave energy of the first train with porosity and 

saturation taken from well logs. 
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TUBE-WAVE MODELING 

    A solution for axial wave propagation in a layered cylinder is explored in order to explain the 

observed phenomena of tube-wave splitting.  The solution is exact and expressed in form of an 

independent mode series with integer index m. It can be used for any layered models with 

cylindrical symmetry when the material parameters for each layer are homogeneous.  The 

boundary conditions can be either welded or sliding, where just the normal stresses and 

displacements are continuous.  The details of the solution are given in Appendix A. For any given 

frequency  and mode index m the tube-wave velocities  were found as the real roots of  

, where is the determinant of a corresponding boundary condition 

problem.  The root search interval is bounded below 1500 m/s , the propagation velocity of 

compressional waves in water. 
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     The primary purpose of the modeling is the explanation of the six different tube-wave 

propagation velocities found in the Stratton experiment data.  The diameter of the drill bit for this 

well was 25 cm and the diameter of the steel casing was 5 mm.  These values, as well as the 

known material parameters for water, steel casing and the outer rock formation were kept 

unchanged.  The quality of bonding between the casing and the outer rock in receiver well 

Ward145 is under investigation because this well is not cemented above the packer at 5100 ft.  

The well was drilled before 1980 and it is most likely that the space between the casing and the 

formation was filled by fragments of shale and sandstone as a result of sedimentation and 

accumulation of broken and washed out rock material. This material will be henceforth referred 

to  as gauge, implying that it represents a poorly consolidated, liquid saturated mixture of sand 

and shale that contains gas, as the formation has some gas bearing layers. Such formations are 

known to have very slow P- and S- wave propagation velocities of (Berryman year). Several 

models were used in an attempt to match the observed tube-wave data, including different types 

of space fillings around the casing: all possible combinations of low velocity gauge, which had 



either welded or sliding contacts with adjacent layers, and could also have thin liquid 

intermediate skin layers that separate gauge from casing or rock. The material parameters and 

sizes of the models are given in Table 3.  Roots were found for the first two harmonics m . 

The results of computations suggest that the velocities of wave trains W  and W are practically 

equal to the compressional and shear velocities of the gauge.  This conclusion is supported by a 

typical value of  ratio equal to 0.62 for these two waves, and  also by a perfect fit for the 

fastest velocity of W .  The thicknesses of the liquid layers had strongest impact on the velocities 

of W , W and W , and were varied to find the best fit. The most interesting results for six out of 

the ten different models are presented in Figure 7 and the models of the bonding is shown in 

Table 4.  
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Table 3.  Parameters of layers for tube-wave modeling 
 

Material 
 

 Vp  
[m/s] 

  Vs 
[m/s] 

Density 
[g/cm3] 

Minimal 
radius [cm] 

Thickness 
[cm] 

Borehole fluid 1550 0 0.95       0 7 

Steel casing 5800 3000 8 7 0.6 

Fluid 1550 0 0.96 7.6 0 – 1 

Gauge 540 280 1.3 7.6 – 8.6 8.4 – 6.4 

Fluid 1550 0 0.96 15 0 – 1 

Cement 3600 1800 2.7 7.6  8.4  

Host rock 3600 1800 2.7 16 ∞  

 

 
 
 
Table 4.  Models of material properties between casing and rock used for tube-wave modeling 
 

Model 1 Cement 

Model 2 Gauge 

Model 3 Water layer   -   Gauge 
Model 4 Gauge - Water layer  

Model 5 Gauge - Water layer – 
Gauge 



 
 

   From these results it follows that only Model 4 provides a good fit for all velocities observed in 

the experiment. This model has sliding contact between casing and the gauge and 7 mm thick 

liquid skin layer separating the gauge from the host rock formation. All gauge-containing models 

show the fastest tube-wave velocity to be about 6% lower than in the cemented case (Model 1). 

Sliding–welded and welded-sliding contact models revealed just the main root for the fastest 

velocity.  The sliding-sliding pair gave just two roots for  W  and W , but these two roots  were 

absent for the liquid skin containing models.    

5 6

 

DISCUSSION 

   The data were recorded at 2000 ft above the depleted gas reservoir.  Overall the slow velocities 

of the tube-waves and the relatively large propagation distances explain why these waves were 

traveling 5 to 15 times longer than the direct P- waves.  Standard cross-well surveys rely on first 

arriving phases for imaging and thus do not target tube-waves. The log data used for the 

comparison were collected 20 years before the experiment and were obtained before the reservoir 

exploitation.  At the time of the survey most of the gas bearing layers were depleted and gas was 

replaced by water.  Therefore, the comparison of tube-wave amplitudes and saturation data has a 

qualitative character indicating more the coincidence of peaks rather than their amplitude. It 

seems natural that the conversion of tube-waves is more effective in saturated rocks that reveal 

lower velocities and thus trap seismic energy.  The mechanism of such conversion requires 

separate study.  

   The low values of the velocities chosen for gauge can be justified by the presence of trapped 

gas, as there were gas bearing layers above the packers. Even a small amount of gas present in the 

fluid saturated rock can dramatically decrease wave propagation velocities (Berryman year).  It is 



also likely that the gauge was unconsolidated or poorly consolidated, which also contributed in 

lowering of wave propagation velocities in it. 

   The recorded travel times of the tube-waves consistently indicate that the well packer was the 

source of slow tube-wave generation. The cement packer represents a strong diffractor that 

converts the fundamental (fastest) tube-wave into a set of slower waves, exciting an addictional 

fundamental mode (m=0) related to the gauge and two modes (m=1) related to the liquid layer.  

Such waves for parallel-layer models were detected and explained by Chouet (1986) and 

Ferrazini and Aki (1987).  They showed that waves propagating in a liquid layer between two 

adjacent halfspaces can have arbitrarily low velocities, which depend on the thickness of the 

layer. In the case of the cylindrical model, the velocity of waves in the liquid layers showed 

detectable sensitivity to changes as low as 1 mm in the liquid layer thickness.  It seems unlikely, 

thought, that liquid skin layer model is an accurate representation of reality.  It seems more likely 

that small pockets of water trapped in the gauge effectively act as a single thin layer.  This is 

partially supported by the presence of low velocity tube-waves for the models containing a liquid 

layer on either side of the gauge. 

 

CONCLUSIONS 

   Two main wave propagation phenomena were found in the Stratton field crosswell seismic 

experiment in addition to those found in a previous study of directly propagating guided waves 

(ref).  The first is that the dominant late phases on the records are composed of tube-waves that 

are generated in the source wells and subsequently converted into waves propagating horizontally 

along the reservoir in gas/water saturated layers. The second phenomenon is that in a poorly 

bonded receiver well a phenomenon of tube-wave mode splitting was found, when six kinds of 

tube-waves were detected, each having a different velocity. The current study shows that the 

existence of these waves can be explained by the contact conditions of the borehole casing with 

the formation.   



   Because reservoir waves should be affected by reservoir properties (i.e. porosity, permeability, 

fracture density and orientation), monitoring based on use of these waves should allow the 

detection and interpretation of reservoir property changes near production boreholes. These 

effects can be used for the development of new and promising technology for the imaging and 

monitoring of underground gas, oil and water reservoirs. 
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APPENDIX A 

Сylindrical vector system 

   The cylindrical vector system used in this paper was introduced by Korneev and Johnson 

(1993). Use of these vectors makes expressions for the Lamé equation especially simple since 

they thoroughly imply a special symmetry of the problem. The cylindrical vector system has the 

form 

3
0 eY mm Y= ,    ,     ,    (A1) 21 eeY mmm YY −=+
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The cylindrical vectors of the system in (A1) are orthonormal  at any point on a cylindrical 

surface. In the space of vector functions  πϕϕ 20),( ≤≤f  defined on a circle  

.., constzconst ==ρ the vectors (A1) satisfy the following orthogonality relations 
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where klδ is equal to 1, when lower indexes are the same, and equal zero otherwise. The 

normalizing coefficients are  νc
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The system (A1) is complete in the sense of convergence in the mean for a Fourier series 

expansion.  This means that any vector function  
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The Lamé equation for a homogenous elastic medium is  

0)( 2 =+×∇×∇+⋅∇∇+ uuu ρωµλ                 (A7) 

where the dependence of the displacement field on time t  is given by u ( ti )ωexp , where ω  is 

the angular frequency. The parameters λ   and µ  from (A7) are the Lamé constants, and ρ  is 

the density. 

    Substitution of the form (A6) into equation (A7) and use of the orthogonality property (A3) 

yields the differential Bessel equations for radial functions :  )(ρνν
mm ff ≡
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where  - is the cylindrical Bessel functions of order , and  is an arbitrary constant, 

which can be determined by solving a corresponding boundary value problem. The parameter 
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from equation (A8) has two forms  
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are the propagation velocities of compressional ( u ) and shear ( ) field components. p su

   The simplicity of equations (A8) illustrates the main advantage of employing the cylindrical 

vectors of the form (A1). In all other systems the expressions for radial functions would also 

contain combinations of Bessel functions and their derivatives. 

   Fields and u satisfy the equations pu s
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which leads to the following conditions 
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For any index m  a correspondent component u of equation (A14) or (A15) 

satisfies the equation of motion (A7) , and represents an independently propagating harmonic of 

this index. 
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The expressions for the traction field on a surface .const=ρ  
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expressed through vectors (A1) have the form: 
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In a cylindrical coordinate system, t is given by: 
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in unit vectors of cylindrical coordinate system. Arguments of the Bessel functions and their 

derivatives are equal to ρα p  for equations (A17) and (A19) and are equal to ρα s  for equation 

(A18) and (A20). 

 



Boundary value problem 

Consider a model consisting of cylindrical layers characterized by constant parameters N

Nnnnn ,...,1,,, =ρµλ  and separated by interfaces ,   . In each layer 

the elastic wave field can be expressed through equations (A17), (A18), where the radial 

functions depend on the parameters of each particular layer. In the fluid-bearing layers we have 

nrr = 1,...,1 −= Nn

0=nµ  and b .  For , the function must be finite for  and 

.  For the outermost medium, the wave field must satisfy the radiation condition at 

infinity , and .  In the cases where the intermediate layers are bounded 

by two interfaces, any two independent solutions for the radial functions  must be used, 

thereby doubling the  number of coefficients a  for that layer.  According to equation 

(A8) the arguments of the Bessel functions can be either real or imaginary, depending on the 

value of the vertical wave number . 
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   For fluid-solid interfaces the boundary conditions have the form  
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while for solid-solid welded contact they are  
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   Orthogonality of cylindrical vectors allows to reduce equations (A21) and (A22) to the separate 

forms 
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     ,     nrr = 1,...,1 −= Nn

and 
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for each harmonic . m

For a set of coefficients a the conditions (A23) and (A24) give a homogeneous 

system of linear equations. Taking to be 
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where  is the vertical phase velocity of the tube waves, the velocities of the propagating tube-

waves can be found to be the roots of the equation , where is the 

determinant of the above mentioned linear system. 
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Figure captions 

 

Figure 1  Data acquisition scheme for the Stratton cross well experiment.  Sources and receivers 

were placed at the upper low-velocity layers V2, V5 and V12.  The reservoir layers are below the 

depth of 5100 ft where all the wells had packers. 

Figure 2  Single shot gathers in 50-100 Hz frequency band for the receiver well Ward 145.  

Traces recorded in V2 (a), V5 (b) and V12 (c) contain high amplitude slower arrivals 

(wavetrains) W1-W6. 

Figure 3  Same as for Figure 2, but filtered at higher  100-160 Hz frequency band.  

Figure 4  Stacked frequency spectra, as functions of time, for the traces recorded in V2, V5 and 

V12 layers.   



Figure 5  Stacked cross-correlation of traces with W1 waveform.  Low band pass filtered (50-100 

Hz, solid curves) and high band pass filtered (100-160 Hz, dashed curves) data produce the same 

peak positions.   

Figure 6  Depth migrated amplitude of W1 wavetrain compared with porosity and saturation log 

data for Ward 145.  Peak positions correlate rather well. 

Figure 7  Logarithm of determinants as function of velocity Vtw at a frequency of 90 Hz 

frequency. Notches indicate tube-wave propagation velocities.  Vertical lines indicate the wave 

train velocities of W1-W6 measured in the field experiment.   Each bonding set is represented by 

the fundamental  m=0 mode (thick solid lines) and first m=1 mode (thin solid line).  The 

parameters of model 4 gave the best fit. 
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